ETY401 - Quantum Theory of Matter

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND				
	ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	ETY401		SEMESTER	4	
COURSE TITLE	Quantum Theory of Matter				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	ì	CREDITS	
Lectures		4		4	
Add rows if necessary. The organization of teaching and the teaching					
methods used are described in detail at (d).					
COURSE TYPE	General bac	kground			
general background, special background, specialized general knowledge, skills development		-			
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION	GREEK				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://cmsl.materials.uoi.gr/lidorikis/courses.html				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Knowledge: Learning and understanding the basic principles of modern quantum theory, with main emphasis on the properties of materials. The student will be able to distinguish between different phenomena and the effects/changes brought about by the quantum nature of matter.

Skills: Solving simple quantum problems such as e.g. electronic states, electronic structure of simple systems, eigenvalue problems, electronic transitions (absorption-emission), scattering problems, etc. Combination of two or more phenomena in one problem.

Competences: Understanding of complex devices and applications based on quantum phenomena (e.g. electronic microscopes, electronic nanodevices), comparing devices regarding the quantum phenomena that govern their operation, ability to attend advanced physics and chemistry courses such as quantum chemistry.

General Competences	
Taking into consideration the general competences that the deg	ree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following does th	he course aim?
Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility
Working independently	and sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

• Search, analyze and synthesize data and information, using the necessary technologies

- Production of new research ideas
- Autonomous work

(3) SYLLABUS

The Quantum Theory of Light: The experiments of Hertz-the light as an electromagnetic wave. Black body radiation. Rayleigh-Jeans Law. Derivation of the Plank formula for the black body. Quantization of light and photoelectric effect. Compton effect and X-rays. Particle-wave complementarity.

The Particle Nature of Matter: The atomistic nature of Matter. The constituents of atoms. The Bohr atom.

Material waves: The de Broglie wave. The experiment of Davisson-Germer. Waveforms and dispersion. Heisenberg's uncertainty principle. Wave-particle dualism.

Quantum mechanics in one dimension: The Born interpretation. The wave function of a free particle. Waveforms in the presence of forces. Particle in a box. Finite potential well. The harmonic quantum oscillator. Expectation values. Physical quantities and operators.

Tunneling Effects: Rectangular barrier, Barrier transmission, Applications.

Quantum Mechanics in Three Dimensions: Particle in three-dimensional box. Central forces and angular momentum. Quantization of space. The hydrogen atom.

Atomic Structure of Materials: Orbital magnetism and Zeeman's phenomenon. The rotating electron. Spin-orbit interaction and other magnetic effects. Exchange symmetry and exclusion principle.

DELIVERY Face-to-face, Distance learning, etc.	In class, lectures	
USE OF INFORMATION AND COMMUNICATIONS	Communication with the students also through the course website	
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	39
fieldwork, study and analysis of	In class recitation	13
bibliography, tutorials, placements, clinical	Self-study for preparing	48

(4) TEACHING and LEARNING METHODS - EVALUATION

STUDENT PERFORMANCE	al examination
EVALUATIONDescription of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, otherLANGU METHSpecifically-defined evaluation criteria are given, and if and where they are accessible to students.Writte	AGE OF EVALUATION: Greek DD OF EVALUATION: n final exam: lopment and explanation of theory loping and resolving problems

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- R.A. Serway, C.J. Moses, C.A. Moyer, "Modern Physics", Crete University Press, Heraklion Crete 2009. Isbn 960-524-059-9
- Stefanos Traxanas, "Quantum Mechanics I", Crete University Press, Heraklion Crete 2009. Isbn 960-524-206-0